Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.108
Filtrar
1.
Curr Med Sci ; 44(2): 450-461, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38639827

RESUMO

OBJECTIVE: Cymbopogon citratus (DC.) Stapf is a medicinal and edible herb that is widely used for the treatment of gastric, nervous and hypertensive disorders. In this study, we investigated the cardioprotective effects and mechanisms of the essential oil, the main active ingredient of Cymbopogon citratus, on isoproterenol (ISO)-induced cardiomyocyte hypertrophy. METHODS: The compositions of Cymbopogon citratus essential oil (CCEO) were determined by gas chromatography-mass spectrometry. Cardiomyocytes were pretreated with 16.9 µg/L CCEO for 1 h followed by 10 µmol/L ISO for 24 h. Cardiac hypertrophy-related indicators and NLRP3 inflammasome expression were evaluated. Subsequently, transcriptome sequencing (RNA-seq) and target verification were used to further explore the underlying mechanism. RESULTS: Our results showed that the CCEO mainly included citronellal (45.66%), geraniol (23.32%), and citronellol (10.37%). CCEO inhibited ISO-induced increases in cell surface area and protein content, as well as the upregulation of fetal gene expression. Moreover, CCEO inhibited ISO-induced NLRP3 inflammasome expression, as evidenced by decreased lactate dehydrogenase content and downregulated mRNA levels of NLRP3, ASC, CASP1, GSDMD, and IL-1ß, as well as reduced protein levels of NLRP3, ASC, pro-caspase-1, caspase-1 (p20), GSDMD-FL, GSDMD-N, and pro-IL-1ß. The RNA-seq results showed that CCEO inhibited the increase in the mRNA levels of 26 oxidative phosphorylation complex subunits in ISO-treated cardiomyocytes. Our further experiments confirmed that CCEO suppressed ISO-induced upregulation of mt-Nd1, Sdhd, mt-Cytb, Uqcrq, and mt-Atp6 but had no obvious effects on mt-Col expression. CONCLUSION: CCEO inhibits ISO-induced cardiomyocyte hypertrophy through the suppression of NLRP3 inflammasome expression and the regulation of several oxidative phosphorylation complex subunits.


Assuntos
Cymbopogon , Óleos Voláteis , Óleos Voláteis/farmacologia , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR , Cymbopogon/química , Cymbopogon/metabolismo , Isoproterenol , Miócitos Cardíacos/metabolismo , Fosforilação Oxidativa , RNA Mensageiro/metabolismo , Hipertrofia/induzido quimicamente , Hipertrofia/tratamento farmacológico , Hipertrofia/metabolismo
2.
Stem Cell Res Ther ; 15(1): 98, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38581019

RESUMO

BACKGROUND: In vitro chondrogenesis of mesenchymal stromal cells (MSCs) driven by the essential chondro-inducer transforming growth factor (TGF)-ß is instable and yields undesired hypertrophic cartilage predisposed to bone formation in vivo. TGF-ß can non-canonically activate bone morphogenetic protein-associated ALK1/2/3 receptors. These have been accused of driving hypertrophic MSC misdifferentiation, but data remained conflicting. We here tested the antihypertrophic capacity of two highly specific ALK1/2/3 inhibitors - compound A (CompA) and LDN-212854 (LDN21) - in order to reveal potential prohypertrophic contributions of these BMP/non-canonical TGF-ß receptors during MSC in vitro chondrogenesis. METHODS: Standard chondrogenic pellet cultures of human bone marrow-derived MSCs were treated with TGF-ß and CompA (500 nM) or LDN21 (500 nM). Daily 6-hour pulses of parathyroid hormone-related peptide (PTHrP[1-34], 2.5 nM, from day 7) served as potent antihypertrophic control treatment. Day 28 samples were subcutaneously implanted into immunodeficient mice. RESULTS: All groups underwent strong chondrogenesis, but GAG/DNA deposition and ACAN expression were slightly but significantly reduced by ALK inhibition compared to solvent controls along with a mild decrease of the hypertrophy markers IHH-, SPP1-mRNA, and Alkaline phosphatase (ALP) activity. When corrected for the degree of chondrogenesis (COL2A1 expression), only pulsed PTHrP but not ALK1/2/3 inhibition qualified as antihypertrophic treatment. In vivo, all subcutaneous cartilaginous implants mineralized within 8 weeks, but PTHrP pretreated samples formed less bone and attracted significantly less haematopoietic marrow than ALK1/2/3 inhibitor groups. CONCLUSIONS: Overall, our data show that BMP-ALK1/2/3 inhibition cannot program mesenchymal stromal cells toward stable chondrogenesis. BMP-ALK1/2/3 signalling is no driver of hypertrophic MSC misdifferentiation and BMP receptor induction is not an adverse prohypertrophic side effect of TGF-ß that leads to endochondral MSC misdifferentiation. Instead, the prohypertrophic network comprises misregulated PTHrP/hedgehog signalling and WNT activity, and a potential contribution of TGF-ß-ALK4/5-mediated SMAD1/5/9 signalling should be further investigated to decide about its postulated prohypertrophic activity. This will help to successfully engineer cartilage replacement tissues from MSCs in vitro and translate these into clinical cartilage regenerative therapies.


Assuntos
Células-Tronco Mesenquimais , Proteína Relacionada ao Hormônio Paratireóideo , Animais , Humanos , Camundongos , Células Cultivadas , Condrócitos/metabolismo , Condrogênese , Proteínas Hedgehog/genética , Hipertrofia/metabolismo , Células-Tronco Mesenquimais/metabolismo , Proteína Relacionada ao Hormônio Paratireóideo/farmacologia , Fator de Crescimento Transformador beta/metabolismo
3.
Zhongguo Zhong Yao Za Zhi ; 49(3): 754-762, 2024 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-38621879

RESUMO

This study aims to explore the mechanism of Linggui Zhugan Decoction(LGZGD) in inhibiting Angiotensin Ⅱ(AngⅡ)-induced cardiomyocyte hypertrophy by regulating sigma-1 receptor(Sig1R). The model of H9c2 cardiomyocyte hypertrophy induced by AngⅡ in vitro was established by preparing LGZGD-containing serum and blank serum. H9c2 cells were divided into normal group, AngⅡ model group, 20% normal rat serum group(20% NSC), and 20% LGZGD-containing serum group. After the cells were incubated with AngⅡ(1 µmol·L~(-1)) or AngⅡ with serum for 72 h, the surface area of cardiomyocytes was detected by phalloidine staining, and the activities of Na~+-K~+-ATPase and Ca~(2+)-Mg~(2+)-ATPase were detected by micromethod. The mitochondrial Ca~(2+) levels were detected by flow cytometry, and the expression levels of atrial natriuretic peptide(ANP), brain natriuretic peptide(BNP), Sig1R, and inositol 1,4,5-triphosphate receptor type 2(IP_3R_2) were detected by Western blot. The expression of Sig1R was down-regulated by transfecting specific siRNA for investigating the efficacy of LGZGD-containing serum on cardiomyocyte surface area, Na~+-K~+-ATPase activity, Ca~(2+)-Mg~(2+)-ATPase activity, mitochondrial Ca~(2+), as well as ANP, BNP, and IP_3R_2 protein expressions. The results showed that compared with the normal group, AngⅡ could significantly increase the surface area of cardiomyocytes and the expression of ANP and BNP(P<0.01), and it could decrease the activities of Na~+-K~+-ATPase and Ca~(2+)-Mg~(2+)-ATPase, the concentration of mitochondrial Ca~(2+), and the expression of Sig1R(P<0.01). In addition, IP_3R_2 protein expression was significantly increased(P<0.01). LGZGD-containing serum could significantly decrease the surface area of cardiomyocytes and the expression of ANP and BNP(P<0.05, P<0.01), and it could increase the activities of Na~+-K~+-ATPase and Ca~(2+)-Mg~(2+)-ATPase, the concentration of mitochondrial Ca~(2+ )(P<0.01), and the expression of Sig1R(P<0.05). In addition, IP_3R_2 protein expression was significantly decreased(P<0.05). However, after Sig1R was down-regulated, the effects of LGZGD-containing serum were reversed(P<0.01). These results indicated that the LGZGD-containing serum could inhibit cardiomyocyte hypertrophy induced by AngⅡ, and its pharmacological effect was related to regulating Sig1R, promoting mitochondrial Ca~(2+ )inflow, restoring ATP synthesis, and protecting mitochondrial function.


Assuntos
Miócitos Cardíacos , ATPase Trocadora de Sódio-Potássio , Ratos , Animais , Células Cultivadas , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo , Fator Natriurético Atrial/genética , Fator Natriurético Atrial/metabolismo , Angiotensina II/efeitos adversos , Angiotensina II/metabolismo , Peptídeo Natriurético Encefálico/metabolismo , Hipertrofia/metabolismo , Cardiomegalia/induzido quimicamente , Cardiomegalia/tratamento farmacológico , Cardiomegalia/genética
4.
J Transl Med ; 22(1): 375, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643121

RESUMO

Maladaptive cardiac hypertrophy contributes to the development of heart failure (HF). The oxidoreductase Selenoprotein T (SELENOT) emerged as a key regulator during rat cardiogenesis and acute cardiac protection. However, its action in chronic settings of cardiac dysfunction is not understood. Here, we investigated the role of SELENOT in the pathophysiology of HF: (i) by designing a small peptide (PSELT), recapitulating SELENOT activity via the redox site, and assessed its beneficial action in a preclinical model of HF [aged spontaneously hypertensive heart failure (SHHF) rats] and against isoproterenol (ISO)-induced hypertrophy in rat ventricular H9c2 and adult human AC16 cardiomyocytes; (ii) by evaluating the SELENOT intra-cardiomyocyte production and secretion under hypertrophied stimulation. Results showed that PSELT attenuated systemic inflammation, lipopolysaccharide (LPS)-induced macrophage M1 polarization, myocardial injury, and the severe ultrastructural alterations, while counteracting key mediators of cardiac fibrosis, aging, and DNA damage and restoring desmin downregulation and SELENOT upregulation in the failing hearts. In the hemodynamic assessment, PSELT improved the contractile impairment at baseline and following ischemia/reperfusion injury, and reduced infarct size in normal and failing hearts. At cellular level, PSELT counteracted ISO-mediated hypertrophy and ultrastructural alterations through its redox motif, while mitigating ISO-triggered SELENOT intracellular production and secretion, a phenomenon that presumably reflects the extent of cell damage. Altogether, these results indicate that SELENOT could represent a novel sensor of hypertrophied cardiomyocytes and a potential PSELT-based new therapeutic approach in myocardial hypertrophy and HF.


Assuntos
Insuficiência Cardíaca , Humanos , Adulto , Ratos , Animais , Idoso , Insuficiência Cardíaca/metabolismo , Miócitos Cardíacos/metabolismo , Isoproterenol/metabolismo , Isoproterenol/farmacologia , Oxirredução , Hipertrofia/metabolismo , Selenoproteínas/metabolismo , Selenoproteínas/farmacologia
5.
Europace ; 26(4)2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38546222

RESUMO

AIMS: Right heart disease (RHD), characterized by right ventricular (RV) and atrial (RA) hypertrophy, and cardiomyocytes' (CM) dysfunctions have been described to be associated with the incidence of atrial fibrillation (AF). Right heart disease and AF have in common, an inflammatory status, but the mechanisms relating RHD, inflammation, and AF remain unclear. We hypothesized that right heart disease generates electrophysiological and morphological remodelling affecting the CM, leading to atrial inflammation and increased AF susceptibility. METHODS AND RESULTS: Pulmonary artery banding (PAB) was surgically performed (except for sham) on male Wistar rats (225-275 g) to provoke an RHD. Twenty-one days (D21) post-surgery, all rats underwent echocardiography and electrophysiological studies (EPS). Optical mapping was performed in situ, on Langendorff-perfused hearts. The contractility of freshly isolated CM was evaluated and recorded during 1 Hz pacing in vitro. Histological analyses were performed on formalin-fixed RA to assess myocardial fibrosis, connexin-43 levels, and CM morphology. Right atrial levels of selected genes and proteins were obtained by qPCR and Western blot, respectively. Pulmonary artery banding induced severe RHD identified by RV and RA hypertrophy. Pulmonary artery banding rats were significantly more susceptible to AF than sham. Compared to sham RA CM from PAB rats were significantly elongated and hypercontractile. Right atrial CM from PAB animals showed significant augmentation of mRNA and protein levels of pro-inflammatory interleukin (IL)-6 and IL1ß. Sarcoplasmic-endoplasmic reticulum Ca2+-ATPase-2a (SERCA2a) and junctophilin-2 were decreased in RA CM from PAB compared to sham rats. CONCLUSIONS: Right heart disease-induced arrhythmogenicity may occur due to dysfunctional SERCA2a and inflammatory signalling generated from injured RA CM, which leads to an increased risk of AF.


Assuntos
Fibrilação Atrial , Cardiopatias , Masculino , Ratos , Animais , Miócitos Cardíacos/metabolismo , Ratos Wistar , Átrios do Coração , Hipertrofia/metabolismo , Hipertrofia/patologia , Inflamação/metabolismo
6.
Mol Metab ; 82: 101912, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38458566

RESUMO

OBJECTIVE: Skeletal muscle plasticity and remodeling are critical for adapting tissue function to use, disuse, and regeneration. The aim of this study was to identify genes and molecular pathways that regulate the transition from atrophy to compensatory hypertrophy or recovery from injury. Here, we have used a mouse model of hindlimb unloading and reloading, which causes skeletal muscle atrophy, and compensatory regeneration and hypertrophy, respectively. METHODS: We analyzed mouse skeletal muscle at the transition from hindlimb unloading to reloading for changes in transcriptome and extracellular fluid proteome. We then used qRT-PCR, immunohistochemistry, and bulk and single-cell RNA sequencing data to determine Mustn1 gene and protein expression, including changes in gene expression in mouse and human skeletal muscle with different challenges such as exercise and muscle injury. We generated Mustn1-deficient genetic mouse models and characterized them in vivo and ex vivo with regard to muscle function and whole-body metabolism. We isolated smooth muscle cells and functionally characterized them, and performed transcriptomics and proteomics analysis of skeletal muscle and aorta of Mustn1-deficient mice. RESULTS: We show that Mustn1 (Musculoskeletal embryonic nuclear protein 1, also known as Mustang) is highly expressed in skeletal muscle during the early stages of hindlimb reloading. Mustn1 expression is transiently elevated in mouse and human skeletal muscle in response to intense exercise, resistance exercise, or injury. We find that Mustn1 expression is highest in smooth muscle-rich tissues, followed by skeletal muscle fibers. Muscle from heterozygous Mustn1-deficient mice exhibit differences in gene expression related to extracellular matrix and cell adhesion, compared to wild-type littermates. Mustn1-deficient mice have normal muscle and aorta function and whole-body glucose metabolism. We show that Mustn1 is secreted from smooth muscle cells, and that it is present in arterioles of the muscle microvasculature and in muscle extracellular fluid, particularly during the hindlimb reloading phase. Proteomics analysis of muscle from Mustn1-deficient mice confirms differences in extracellular matrix composition, and female mice display higher collagen content after chemically induced muscle injury compared to wild-type littermates. CONCLUSIONS: We show that, in addition to its previously reported intracellular localization, Mustn1 is a microprotein secreted from smooth muscle cells into the muscle extracellular space. We explore its role in muscle ECM deposition and remodeling in homeostasis and upon muscle injury. The role of Mustn1 in fibrosis and immune infiltration upon muscle injury and dystrophies remains to be investigated, as does its potential for therapeutic interventions.


Assuntos
60526 , Músculo Esquelético , Animais , Feminino , Humanos , Camundongos , Matriz Extracelular/metabolismo , Hipertrofia/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Miócitos de Músculo Liso/metabolismo
7.
Peptides ; 175: 171182, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38428743

RESUMO

With the previous knowledge of the cardioprotective effects of the Angiotensin-(1-7) axis, a agonist of Mas receptor has been described, the CGEN-856S. This peptide is more stable than Ang-(1-7), and has a low binding affinity to Angiotensin II receptors. Although the cardioprotective effects of CGEN-856S were previously shown in vivo, the mechanisms behind its effects are still unknown. Here, we employed a combination of molecular biology, confocal microscopy, and genetically modified mouse with Mas deletion to investigate the CGEN-856S protective signaling in cardiomyocytes. In isolated adult ventricular myocytes, CGEN-856S induced an increase in nitric oxide (NO) production which was absent in cells from Mas knockout mice. Using western blot, we observed a significant increase in phosphorylation of AKT after treatment with CGEN-856S. In addition, CGEN-856S prevented the Ang II induced hypertrophy and the nuclear translocation of GRK5 in a culture model of rat neonatal cardiomyocytes. Blockage of Mas receptor and inhibition of the NO synthase abolished the effects of CGEN-856S on Ang II treated cardiomyocytes. In conclusion, we show that CGEN-856S acting via receptor Mas induces NO raise to block Ang II induced cardiomyocyte hypertrophy. These results indicate that CGEN-856S acts very similarly to Ang-(1-7) in cardiac myocytes, highlighting its therapeutic potential for treating cardiovascular diseases.


Assuntos
Miócitos Cardíacos , Óxido Nítrico , Ratos , Camundongos , Animais , Miócitos Cardíacos/metabolismo , Óxido Nítrico/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Proto-Oncogene Mas , Receptores Acoplados a Proteínas G/metabolismo , Hipertrofia/metabolismo , Angiotensina II/metabolismo
8.
Life Sci ; 344: 122560, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38490296

RESUMO

AIMS: Ursodeoxycholic acid (UDCA) is a hydrophilic dihydroxy bile acid used for cholestatic liver disease and exhibits antioxidant, antitumor, and anti-inflammatory effects. However, its potential effects on atopic dermatitis (AD) have not been elucidated. This study aimed to evaluate the efficacy of UDCA in inhibiting the inflammatory response and alleviating lesions in AD-like mice. MAIN METHODS: To investigate the efficacy of UDCA in AD-like inflammatory responses, tumor necrosis factor-alpha (TNF-α)- and interferon-gamma (IFN-γ)-stimulated HaCaT cells and anti-dinitrophenyl immunoglobulin E (DNP-IgE)- and human serum albumin (HSA)-stimulated RBL-2H3 cells were used to investigate the levels of inflammatory factors and their mechanisms. AD-like lesions were induced by applying DNCB/DFE to mice. The effect of UDCA administration in AD-like mice was analyzed by assessing organ weight, serum IgE and inflammatory cytokine levels, and histopathological changes using immunohistochemical and immunofluorescent staining. KEY FINDINGS: In HaCaT cells, UDCA significantly diminished TARC, MDC, MCP-1, and IL-6 expression by inhibiting the phosphorylation of nuclear NF-κB and cytoplasmic IκB, and also increased the levels of skin barrier protein. In RBL-2H3 cells, UDCA reduced ß-hexosaminidase and IL-4 levels. In AD-like mice, UDCA suppressed organ hypertrophy, ear edema, SCORAD index, DFE-specific IgE levels, inflammatory cytokine levels, skin hypertrophy, mast cell invasion, skin barrier loss, and thymic stromal lymphopoietin-positive areas. SIGNIFICANCE: UDCA suppressed the expression of pro-inflammatory cytokines by keratinocytes and mast cells. It also alleviated atopy by suppressing symptoms without organ toxicity in AD-like mice. UDCA may be an effective and safe treatment for AD.


Assuntos
Dermatite Atópica , Humanos , Animais , Camundongos , Ratos , Dermatite Atópica/induzido quimicamente , Pele , Dinitroclorobenzeno , Ácido Ursodesoxicólico/farmacologia , Ácido Ursodesoxicólico/metabolismo , Citocinas/metabolismo , NF-kappa B/metabolismo , Imunoglobulina E , Hipertrofia/metabolismo , Camundongos Endogâmicos BALB C
9.
Sci Rep ; 14(1): 6503, 2024 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-38499550

RESUMO

Alterations in thyroid hormones (TH) and thyroid-stimulating hormone levels are frequently found following exposure to chemicals of concern. Dysregulation of TH levels can severely perturb physiological growth, metabolism, differentiation, homeostasis in the adult and developmental processes in utero. A frequently identified mode of action for this interaction is the induction of hepatic detoxification mechanisms (e.g. SULTs and UGTs), which lead to TH conjugation and elimination and therefore interfere with hormonal homeostasis, fulfilling the endocrine disruptors (EDs) definition. A short-term study in rats with dietary exposure to cyproconazole, epoxiconazole and prochloraz was conducted and hepatocyte hypertrophy, hepatic UGT activity and Phase 1/2 gene expression inductions were observed together with changes in TH levels and thyroid follicular hypertrophy and hyperplasia. To test for specific interaction with the thyroid hormone system, in vitro assays were conducted covering thyroidal I-uptake (NIS), TH transmembranal transport via MCT8 and thyroid peroxidase (TPO) function. Assays for iodothyronine deiodinases (DIO1-DIO3) and iodotyrosine deiodinase (DEHAL1) were included, and from the animal experiment, Dio1 and Dehal1 activities were measured in kidney and liver as relevant local indicators and endpoints. The fungicides did not affect any TH-specific KEs, in vitro and in vivo, thereby suggesting hepatic conjugation as the dominant MoA.


Assuntos
Glândula Tireoide , Hormônios Tireóideos , Ratos , Animais , Hormônios Tireóideos/metabolismo , Glândula Tireoide/metabolismo , Homeostase , Triazóis/farmacologia , Triazóis/metabolismo , Hipertrofia/metabolismo
10.
Knee Surg Sports Traumatol Arthrosc ; 32(4): 821-828, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38415965

RESUMO

PURPOSE: Minced cartilage implantation (MCI) is an evolving technique for the treatment of osteochondral lesions. It was hypothesised that mincing of cartilage may affect chondrocyte viability and phenotype and that embedding in collagen 1 gel results in an improved outcome. The objective of this study was to evaluate the impact of cartilage mincing and whether collagen 1 gel mediates beneficial effects on the chondrocyte phenotype and viability. METHODS: Human cartilage samples from 11 patients undergoing total knee arthroplasty were collected and minced according to the MCI protocol. Minced cartilage was cultured for 1 week with and without embedding in collagen 1 gel and was compared with unminced cartilage flakes as control. Quantitative reverse transcription-PCR and immunohistochemical staining for the chondrocyte marker genes SOX9, COL2, ACAN, COL10 and MMP13 were used to examine the chondrocyte phenotype. Cell death was assessed by the terminal deoxynucleotidyl transferase dUTP nick-end labeling assay. RESULTS: Increased chondrocyte cell death of cultured cartilage after mincing was observed. Chondrocytes from minced cartilage exhibited significantly decreased expression and protein levels of homeostatic and hypertrophic chondrocyte markers. Embedding in collagen 1 gel showed no positive effect on viability. However, remarkable is the increased expression of ACAN and the preserved protein level of SOX9 in the collagen 1-embedded minced cartilage. CONCLUSIONS: This study shows that the mincing of cartilage leads to increased chondrocyte death and decreased expression of chondrocyte phenotypic marker genes after 7 days. The use of collagen 1 gel may improve the stability of the phenotype, which needs to be further elucidated. LEVEL OF EVIDENCE: Level III (therapeutic).


Assuntos
Cartilagem Articular , Cartilagem , Adulto , Humanos , Condrócitos/patologia , Fenótipo , Hipertrofia/metabolismo , Hipertrofia/patologia , Colágeno/metabolismo , Cartilagem Articular/patologia
11.
J Nanobiotechnology ; 22(1): 72, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38374072

RESUMO

Osteoarthritis (OA) is one of the most prevalent chronic musculoskeletal diseases among the elderly population. In this study, macrophage-derived exosomes were isolated and identified. Exosomes were subjected to microRNA (miRNA) sequencing and bioinformatic analysis, and differentially expressed miRNAs were verified. miR-26b-5p target genes were confirmed through target-site mutation combined with a dual-luciferase reporter assay. The effects of miR-26b-5p on macrophage polarization and chondrocyte hypertrophy were assessed in vitro. miR-26b-5p agomir was applied to mice with OA induced by anterior cruciate ligament transection (ACLT). The therapeutic effects of miR-26b-5p were evaluated via pain behavior experiments and histological observations. In vitro, miR-26b-5p repolarized M1 macrophages to an anti-inflammatory M2 type by targeting the TLR3 signaling pathway. miR-26b-5p could target COL10A1, further inhibiting chondrocyte hypertrophy induced by M1 macrophage-conditioned medium (M1-CM). In vivo, miR-26b-5p agomir ameliorated gait abnormalities and mechanical allodynia in OA mice. miR-26b-5p treatment attenuated synovitis and cartilage degeneration, thereby delaying OA progression. In conclusion, M2 macrophage-derived exosomal miR-26b-5p could protect articular cartilage and ameliorate gait abnormalities in OA mice by targeting TLR3 and COL10A1. miR-26b-5p further affected macrophage polarization and chondrocyte hypertrophy. Thus, this exosomal miR-26b-5p-based strategy might be a potential method for OA treatment.


Assuntos
MicroRNAs , Osteoartrite , Idoso , Animais , Humanos , Camundongos , Condrócitos/metabolismo , Hipertrofia/metabolismo , Hipertrofia/patologia , Macrófagos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Osteoartrite/metabolismo , Receptor 3 Toll-Like/metabolismo , Colágeno Tipo X/genética , Colágeno Tipo X/metabolismo , Exossomos/genética
12.
J Nutr Sci Vitaminol (Tokyo) ; 70(1): 53-60, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38417852

RESUMO

Maintenance of appropriate muscle mass is necessary for good quality of life as skeletal muscles play critical roles in locomotion, metabolic homeostasis, and thermogenesis. Polyamines are essential metabolites that regulate several important cellular functions. In C57BL6 mice who underwent sciatic nerve transection of the hind limb, compensatory muscle hypertrophy is enhanced by the administration of polyamines. However, the action mechanisms of polyamines in muscle hypertrophy remain unclear. Here, we isolated PA YEAST SC-1, a polyamine-rich Saccharomyces cerevisiae, from Baker's yeast. We examined whether PA YEAST SC-1 induces muscle hypertrophy and elucidated the underlying action mechanisms of polyamines and the active ingredients in PA YEAST SC-1 using C2C12 myotubes. PA YEAST SC-1 at 1 mg/mL increased myosin heavy chain expression in C2C12 myotubes. Mechanistically, PA YEAST SC-1 induced the activation of Akt/mechanistic target of rapamycin kinase/p70S6K signaling. Furthermore, PA YEAST SC-1 decreased the expression levels of the ubiquitin ligases, atrogin-1 and muscle RING finger-1, via forkhead box O1 phosphorylation. These findings suggest PA YEAST SC-1 as an effective food ingredient for the treatment of muscle hypertrophy.


Assuntos
Qualidade de Vida , Saccharomyces cerevisiae , Animais , Camundongos , Camundongos Endogâmicos C57BL , Fibras Musculares Esqueléticas , Músculo Esquelético/metabolismo , Hipertrofia/metabolismo , Hipertrofia/patologia , Atrofia Muscular/metabolismo
13.
Int J Mol Sci ; 25(4)2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38396885

RESUMO

The mammalian myocardium grows rapidly during early development due to cardiomyocyte proliferation, which later transitions to cell hypertrophy to sustain the heart's postnatal growth. Although this cell transition in the postnatal heart is consistently preserved in mammalian biology, little is known about the regulatory mechanisms that link proliferation suppression with hypertrophy induction. We reasoned that the production of a micro-RNA(s) could serve as a key bridge to permit changes in gene expression that control the changed cell fate of postnatal cardiomyocytes. We used sequential expression analysis to identify miR205 as a micro-RNA that was uniquely expressed at the cessation of cardiomyocyte growth. Cardiomyocyte-specific miR205 deletion animals showed a 35% increase in heart mass by 3 months of age, with commensurate changes in cell cycle and Hippo pathway activity, confirming miR205's potential role in controlling cardiomyocyte proliferation. In contrast, overexpression of miR205 in newborn hearts had little effect on heart size or function, indicating a complex, probably redundant regulatory system. These findings highlight miR205's role in controlling the shift from cardiomyocyte proliferation to hypertrophic development in the postnatal period.


Assuntos
Coração , MicroRNAs , Miócitos Cardíacos , Animais , Animais Recém-Nascidos , Proliferação de Células/genética , Hipertrofia/metabolismo , Mamíferos , Miócitos Cardíacos/metabolismo , Camundongos
14.
J Cell Physiol ; 239(4): e31182, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38214457

RESUMO

Ribosomes are essential cellular machinery for protein synthesis. It is hypothesised that ribosome content supports muscle growth and that individuals with more ribosomes have greater increases in muscle size following resistance training (RT). Aerobic conditioning (AC) also elicits distinct physiological adaptations; however, no measures of ribosome content following AC have been conducted. We used ribosome-related gene expression as a proxy measure for ribosome content and hypothesised that AC and RT would increase ribosome-related gene expression. Fourteen young men and women performed 6 weeks of single-legged AC followed by 10 weeks of double-legged RT. Muscle biopsies were taken following AC and following RT in the aerobically conditioned (AC+RT) and unconditioned (RT) legs. No differences in regulatory genes (Ubf, Cyclin D1, Tif-1a and Polr-1b) involved in ribosomal biogenesis or ribosomal RNA (45S, 5.8S, 18S and 28S rRNAs) expression were observed following AC and RT, except for c-Myc (RT > AC+RT) and 5S rRNA (RT < AC+RT at pre-RT) with 18S external transcribed spacer and 5.8S internal transcribed spacer expression decreasing from pre-RT to post-RT in the RT leg only. When divided for change in leg-lean soft tissue mass (ΔLLSTM) following RT, legs with the greatest ΔLLSTM had lower expression in 11/13 measured ribosome-related genes before RT and decreased expression in 9/13 genes following RT. These results indicate that AC and RT did not increase ribosome-related gene expression. Contrary to previous research, the greatest increase in muscle mass was associated with lower changes in ribosome-related gene expression over the course of the 10-week training programme. This may point to the importance of translational efficiency rather than translational capacity (i.e. ribosome content) in mediating long-term exercise-induced adaptations in skeletal muscle.


Assuntos
Treinamento de Força , Masculino , Humanos , Feminino , Ribossomos/genética , Biossíntese de Proteínas/genética , Músculo Esquelético/metabolismo , Hipertrofia/genética , Hipertrofia/metabolismo
15.
J Biol Chem ; 300(2): 105652, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38224947

RESUMO

The physiological importance of cardiac myosin regulatory light chain (RLC) phosphorylation by its dedicated cardiac myosin light chain kinase has been established in both humans and mice. Constitutive RLC-phosphorylation, regulated by the balanced activities of cardiac myosin light chain kinase and myosin light chain phosphatase (MLCP), is fundamental to the biochemical and physiological properties of myofilaments. However, limited information is available on cardiac MLCP. In this study, we hypothesized that the striated muscle-specific MLCP regulatory subunit, MYPT2, targets the phosphatase catalytic subunit to cardiac myosin, contributing to the maintenance of cardiac function in vivo through the regulation of RLC-phosphorylation. To test this hypothesis, we generated a floxed-PPP1R12B mouse model crossed with a cardiac-specific Mer-Cre-Mer to conditionally ablate MYPT2 in adult cardiomyocytes. Immunofluorescence microscopy using the gene-ablated tissue as a control confirmed the localization of MYPT2 to regions where it overlaps with a subset of RLC. Biochemical analysis revealed an increase in RLC-phosphorylation in vivo. The loss of MYPT2 demonstrated significant protection against pressure overload-induced hypertrophy, as evidenced by heart weight, qPCR of hypertrophy-associated genes, measurements of myocyte diameters, and expression of ß-MHC protein. Furthermore, mantATP chase assays revealed an increased ratio of myosin heads distributed to the interfilament space in MYPT2-ablated heart muscle fibers, confirming that RLC-phosphorylation regulated by MLCP, enhances cardiac performance in vivo. Our findings establish MYPT2 as the regulatory subunit of cardiac MLCP, distinct from the ubiquitously expressed canonical smooth muscle MLCP. Targeting MYPT2 to increase cardiac RLC-phosphorylation in vivo may improve baseline cardiac performance, thereby attenuating pathological hypertrophy.


Assuntos
Miócitos Cardíacos , Quinase de Cadeia Leve de Miosina , Animais , Humanos , Camundongos , Hipertrofia/metabolismo , Miócitos Cardíacos/metabolismo , Cadeias Leves de Miosina/genética , Cadeias Leves de Miosina/metabolismo , Quinase de Cadeia Leve de Miosina/genética , Quinase de Cadeia Leve de Miosina/metabolismo , Fosfatase de Miosina-de-Cadeia-Leve/metabolismo , Fosforilação , Camundongos Endogâmicos C57BL
16.
Matrix Biol ; 127: 8-22, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38281553

RESUMO

Lumbar spinal canal stenosis is primarily caused by ligamentum flavum hypertrophy (LFH), which is a significant pathological factor. Nevertheless, the precise molecular basis for the development of LFH remains uncertain. The current investigation observed a notable increase in thrombospondin-1 (THBS1) expression in LFH through proteomics analysis and single-cell RNA-sequencing analysis of clinical ligamentum flavum specimens. In laboratory experiments, it was demonstrated that THBS1 triggered the activation of Smad3 signaling induced by transforming growth factor ß1 (TGFß1), leading to the subsequent enhancement of COL1A2 and α-SMA, which are fibrosis markers. Furthermore, experiments conducted on a bipedal standing mouse model revealed that THBS1 played a crucial role in the development of LFH. Sestrin2 (SESN2) acted as a stress-responsive protein that suppressed the expression of THBS1, thus averting the progression of fibrosis in ligamentum flavum (LF) cells. To summarize, these results indicate that mechanical overloading causes an increase in THBS1 production, which triggers the TGFß1/Smad3 signaling pathway and ultimately results in the development of LFH. Targeting the suppression of THBS1 expression may present a novel approach for the treatment of LFH.


Assuntos
Ligamento Amarelo , Proteína Smad3 , Trombospondinas , Fator de Crescimento Transformador beta1 , Animais , Camundongos , Fibrose , Hipertrofia/metabolismo , Ligamento Amarelo/metabolismo , Ligamento Amarelo/patologia , Transdução de Sinais , Estresse Mecânico , Trombospondinas/genética , Trombospondinas/metabolismo , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo , Proteína Smad3/genética , Proteína Smad3/metabolismo
17.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(1): 45-51, 2024 Jan 20.
Artigo em Chinês | MEDLINE | ID: mdl-38293975

RESUMO

OBJECTIVE: To investigate whether resveratrol alleviates hyperglycemia-induced cardiomyocyte hypertrophy by enhancing the expression of silent information regulation 2 homolog 1 (SIRT1) to maintain mitochondrial homeostasis. METHODS: Rat cardiomyocytes H9c2 cells with or without lentivirus-mediated mRNA interference of SIRT1 were cultured in high glucose (HG) and treated with resveratrol for 72 h. The changes in superoxide dismutase (SOD) activity, malondialdehyde (MDA) content, reactive oxygen species (ROS) level, and relative surface of the cells were examined, and the mRNA expressions of atrial natriuretic factor (ANF) and brain natriuretic peptide (BNP) and protein expressions of SIRT1, mitochondrial fusion related proteins optic atrophy protein 1 (OPA1) and mitofusin 2, mitochondrial division related proteins dynamin-related protein 1 (DRP1) and fission protein 1 (FIS1), and mitophagy-related proteins BNIP3L and LC3 were detected using RT-qPCR and Western blotting. RESULTS: HG exposure significantly decreased SOD activity, increased MDA content, ROS production, relative cell surface, and the mRNA expressions of ANF and BNP in the cardiomyocytes; the protein expressions of SIRT1, OPA1, mitofusin 2 and BNIP3L and LC3-Ⅱ/LC3-Ⅰ ratio were all decreased and the protein expressions of DRP1 and FIS1 increased in HG-exposed cells (P<0.01). All these changes in HG-exposed cardiomyocytes were significantly alleviated by treatment with resveratrol (P<0.05). The protective effects of resveratrol against HG exposure in the cardiomyocytes were obviously attenuated by transfection of the cells with si-SIRT1 (P<0.05). CONCLUSION: Resveratrol inhibits hyperglycemia-induced cardiomyocyte hypertrophy by reducing oxidative stress, the mechanisms of which involve enhancement of SIRT1 protein expression, regulation of mitochondrial fusion and division balance, and promoting BNIP3L-mediated mitophagy to maintain mitochondrial homeostasis in the cells.


Assuntos
Hiperglicemia , Sirtuína 1 , Ratos , Animais , Resveratrol/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Sirtuína 1/metabolismo , Miócitos Cardíacos , Hiperglicemia/metabolismo , Hipertrofia/metabolismo , Superóxido Dismutase/metabolismo , Homeostase , RNA Mensageiro/metabolismo , Estresse Oxidativo
18.
Stem Cell Res Ther ; 15(1): 5, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167208

RESUMO

BACKGROUND: The prevalence of heart failure is constantly increasing, and the prognosis of patients remains poor. New treatment strategies to preserve cardiac function and limit cardiac hypertrophy are therefore urgently needed. Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are increasingly used as an experimental platform for cardiac in vitro studies. However, in contrast to adult cardiomyocytes, hiPSC-CMs display immature morphology, contractility, gene expression and metabolism and hence express a naive phenotype that resembles more of a foetal cardiomyocyte. METHODS: A library of 14 novel compounds was synthesized in-house and screened for GATA4-NKX2-5 reporter activity and cellular toxicity. The most potent compound, 3i-1262, along with previously reported GATA4-acting compounds, were selected to investigate their effects on hypertrophy induced by endothelin-1 or mechanical stretch. Morphological changes and protein expression were characterized using immunofluorescence staining and high-content analysis. Changes in gene expression were studied using qPCR and RNA sequencing. RESULTS: The prototype compound 3i-1262 inhibited GATA4-NKX2-5 synergy in a luciferase reporter assay. Additionally, the isoxazole compound 3i-1262 inhibited the hypertrophy biomarker B-type natriuretic peptide (BNP) by reducing BNP promoter activity and proBNP expression in neonatal rat ventricular myocytes and hiPSC-CMs, respectively. Treatment with 3i-1262 increased metabolic activity and cardiac troponin T expression in hiPSC-CMs without affecting GATA4 protein levels. RNA sequencing analysis revealed that 3i-1262 induces gene expression related to metabolic activity and cell cycle exit, indicating a change in the identity and maturity status of hiPSC-CMs. The biological processes that were enriched in upregulated genes in response to 3i-1262 were downregulated in response to mechanical stretch, and conversely, the downregulated processes in response to 3i-1262 were upregulated in response to mechanical stretch. CONCLUSIONS: There is currently a lack of systematic understanding of the molecular modulation and control of hiPSC-CM maturation. In this study, we demonstrated that the GATA4-interfering compound 3i-1262 reorganizes the cardiac transcription factor network and converts hypertrophic signalling towards enhanced cardiomyocyte identity and maturity. This conceptually unique approach provides a novel structural scaffold for further development as a modality to promote cardiomyocyte specification and maturity.


Assuntos
Células-Tronco Pluripotentes Induzidas , Miócitos Cardíacos , Humanos , Ratos , Animais , Miócitos Cardíacos/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Hipertrofia/metabolismo , Fatores de Transcrição/metabolismo , Transdução de Sinais , Fator de Transcrição GATA4/genética , Fator de Transcrição GATA4/metabolismo
19.
Pediatr Rheumatol Online J ; 22(1): 6, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38166938

RESUMO

BACKGROUND: Juvenile Idiopathic Arthritis (JIA) induces growth disturbances in affected joints. Fibroblast-like synoviocytes (FLS) play a crucial role in JIA pathogenesis. FLS overexpress bone morphogenetic protein 4 (BMP4) and have a chondrocyte-like phenotype. FLS contribute directly to joint growth disturbances through endochondral bone formation. We investigated the ability of methotrexate to inhibit BMP4 expression and alter the hypertrophic chondrocyte-like phenotype of JIA FLS. METHODS: We selected primary cells from three subjects with persistent oligoarticular JIA, three subjects who eventually extended to a polyarticular disease course, which we termed extended-to-be (ETB), and three subjects who had polyarticular arthritis at time of diagnosis. We treated cells with methotrexate and two BMP4 inhibitors: noggin and chordin. We measured protein concentration from three chondrocyte cell markers: collagen II, aggrecan, and collagen X as well as BMP4. RESULTS: ColX, marker of chondrocyte hypertrophy, was significantly increased in polyarticular FLS when compared to both persistent FLS and ETB FLS, making polyarticular FLS the most like hypertrophic chondrocytes. Methotrexate caused significant decreases in BMP4 and ColX expression in persistent, ETB, and polyarticular FLS when compared to respective untreated cells. Ligand-binding BMP4 antagonists, noggin and chordin, caused significant decreases in ColX expression in FLS from all three disease courses and significant increases in collagen II protein, an early chondrocyte marker, when compared to respective untreated cells. CONCLUSIONS: Methotrexate, the first-line therapy in the treatment of JIA, mimics BMP4 antagonists by effectively lowering BMP4 and ColX expression in FLS. Inhibiting FLS from undergoing hypertrophy could prevent these cells from contributing to joint growth disturbances via endochondral bone formation.


Assuntos
Artrite Juvenil , Proteína Morfogenética Óssea 4 , Metotrexato , Humanos , Artrite Juvenil/metabolismo , Proteína Morfogenética Óssea 4/antagonistas & inibidores , Proteína Morfogenética Óssea 4/metabolismo , Condrócitos/metabolismo , Colágeno/metabolismo , Fibroblastos/metabolismo , Fibroblastos/patologia , Hipertrofia/metabolismo , Metotrexato/farmacologia , Fenótipo
20.
Mol Med Rep ; 29(3)2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38275127

RESUMO

Heart failure is a primary cause of global mortality. In the present study, whether larixyl acetate, an inhibitor of transient receptor potential cation channel subfamily C member 6, attenuates pressure overload­induced heart failure in mice was investigated. To test this hypothesis, a transverse aortic constriction (TAC) animal model and an angiotensin II (Ang II)­treated H9c2 cell model were used. Cardiac and cellular structure, function and the expression levels of hypertrophy, endoplasmic reticulum (ER) stress, apoptosis, autophagy and pmTOR/mTOR related mRNAs or proteins were assessed to explore the underlying molecular mechanisms. The results indicated that treatment with TAC or Ang II leads to significant hypertrophy and dysfunction of the heart or H9c2 cells, accompanied by an increase in ER stress, apoptosis and activation of the mTOR signaling pathway, and a decrease in autophagy. The administration of larixyl acetate attenuated these impairments, which can be reversed by inhibiting autophagy through the activation of the mTOR signaling pathway. These findings suggested that larixyl acetate can effectively protect against pressure overload­induced heart failure by enhancing autophagy and limiting ER stress and apoptosis through inhibition of the mTOR pathway.


Assuntos
Acetatos , Estenose da Valva Aórtica , Insuficiência Cardíaca , Naftalenos , Camundongos , Animais , Canal de Cátion TRPC6 , Miócitos Cardíacos/metabolismo , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/etiologia , Insuficiência Cardíaca/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Autofagia , Estenose da Valva Aórtica/metabolismo , Hipertrofia/metabolismo , Cardiomegalia/tratamento farmacológico , Cardiomegalia/metabolismo , Apoptose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...